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1 Introduction

In recent years, the capability of LLMs to solve complex mathematical problems has rapidly increased.
However, these high-performing models often come with substantial computational costs, which can
be unnecessary when the complexity of a problem does not warrant such extensive resources. To
address this, our work is focused on an adaptive routing mechanism that assigns math problems to
either a general-purpose solver or a more resource-intensive model based on their difficulty.

We use datasets with math problems of varying difficulty (such as MATH and HARDMath) to train a
lightweight binary classifier. This classifier will then act as a decision-making proxy to decide whether
a problem is reliably solvable by the simpler, cheaper model, or whether the use of a reasoning model
would significantly increase the chance of an accurate response.

With the modern advent of heavy, chain of thought enabled reasoning LLM models, math is in-
creasingly solvable using Al. But often, users choose these models superfluously when the difficulty
of their problem, does not require such a costly solution. These reasoning models, enabled using
reinforcement learning techniques to think about their answers for significant periods of time, use
external tools, and complete reflect on their past work, are sometimes up to an order of magnitude
more expensive to operate than foundation LLMs. To that end, reducing the number of calls for easy
problems going to these models not only improves time to solution for users, but also reduces cost
for providers.

Our work plans to use a variety of techniques from data processing, LLM calling, and logistic
regression to form a consistent semantic classification of problems as solvable by our base model
GPT-4.1 and GPT-4.1 mini. This comes in comparison to a reasoning-enabled model like GPT-04,
both from Google. By the end of the project, our goal is a full end to end query processing and
handling system which can provide consistently correct, but cost effective solutions to math based
queries.

This system is intended to be modular and extensible: it does not assume a fixed set of models or a
particular type of math input. As model architectures evolve, the routing strategy can be retrained
or fine-tuned to accommodate new capabilities or pricing structures. The broader vision is to allow
Al-based math problem solving to scale in a way that is both financially sustainable and performance-
aware. In addition to cost savings, we see this work as a step toward more intelligent and dynamic
model orchestration. Instead of relying on a single powerful model to handle every input, adaptive
pipelines can help break down Al tasks into smarter, more efficient workflows. Math, with its clear
structure and solution correctness, offers an ideal testbed for this class of optimization.

2 Related Work

Mathematical reasoning has become a central benchmark for evaluating the capabilities of large
language models (LLMs), leading to the creation of large, specialized datasets and increasingly
powerful reasoning architectures. While models have made significant strides in solving complex
math problems, there has been comparatively less attention on optimizing these solutions for efficiency,
particularly in routing problems to different models based on difficulty or computational cost.
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Throughout the modern Al landscape, math consistently serves as a significant benchmark. Examples
like Humanity’s Last Exam (Chen et al., 2024) and FrontierMath (Anil et al., 2024) are considered
high-priority tasks for measuring LLM intelligence. New LLMs are frequently released, highlighting
their growing capabilities in these domains. Consequently, a variety of datasets have been developed,
including HARDMath (Yu et al., 2024), the MATH Dataset (Hendrycks et al., 2021), and Omni-
MATH (Gao et al., 2024). These datasets are instrumental in training models to classify math problem
difficulty.

On the modeling side, there has been a wave of progress in the capability of language models to
reason through increasingly complex mathematical problems. One of the most notable developments
was Minerva, a system that demonstrated how scaling language models and pairing them with chain-
of-thought prompting techniques could yield significant performance improvements on quantitative
reasoning tasks (Lewkowycz et al., 2022). Minerva’s key innovation was not just in its use of a larger
language model, but in its ability to reason step by step, replicating a human-like process of deriving
intermediate steps before arriving at a final solution. This was particularly impactful in domains like
algebra, calculus, and probability, where the intermediate reasoning process is crucial to arriving at
the correct answer. The model was fine-tuned on a large corpus of mathematical content, including
textbooks and academic problems, enabling it to internalize domain-specific solution strategies and
logical structures. Minerva’s performance on benchmarks such as MATH and GSMS8K established a
new standard for LLM mathematical reasoning, emphasizing the value of structured thinking over
direct answer prediction.

Following this trend, AlphaCode applied similar principles of structured reasoning to the domain of
competitive programming. Unlike mathematical problem solving, which often focuses on symbolic
manipulation and numerical computation, competitive programming requires converting natural
language problem descriptions into syntactically correct, semantically valid code. AlphaCode’s
contribution lay in its ability to generate, filter, and rerank large pools of candidate solutions using
both language modeling and program execution signals. By generating thousands of potential code
completions and narrowing them down based on performance and diversity, AlphaCode was able to
reach human-competitive performance on Codeforces problems. While its architecture was similar to
large-scale transformers used in other domains, the task-specific adaptations—including a dataset
of programming contest problems and a post-generation selection mechanism—highlighted the
importance of task-aligned supervision and search strategies in enhancing LLM capabilities.

More recently, models like MathGPT have extended these ideas to more symbolic and formal
branches of mathematics, such as proofs, formal logic, and equation manipulation. MathGPT places
a stronger emphasis on symbolic accuracy, aiming to emulate not just the reasoning process but
also the rigorous formalism of mathematical writing. This includes handling multi-line derivations,
symbolic transformations, and context-sensitive notations, which are essential for higher mathematics.
These models are often trained or fine-tuned on curated datasets that contain step-by-step derivations,
formal solutions, and domain-specific symbols. In contrast to general-purpose LLMs, MathGPT is
designed to preserve mathematical structure and correctness even in long-form answers. As a result,
it represents an evolution in the specialization of LLMs toward domain-specific reasoning, where
correctness is not just measured by plausibility but by strict adherence to formal rules and derivations.

Together, these models—Minerva, AlphaCode, and MathGPT—demonstrate a trajectory in which
language models are becoming increasingly adept at reasoning in structured domains. Each system
applies scale, supervision, and prompting differently to align with its respective domain’s needs, but
all share a reliance on chain-of-thought reasoning, problem-specific training data, and downstream
filtering or evaluation mechanisms. Their successes underscore the growing potential of LLMs not
only to retrieve or summarize information but to engage in complex, multi-step problem solving that
mirrors human cognition in specialized tasks.

Our approach draws on prior work in ensemble learning and model routing. In traditional ensemble
systems, selector models are trained to decide which base model should handle a given input. More
recently, systems like RouteLLM have explored full-model selection, sending queries to different
language models based on expected cost, latency, or complexity (Jiang et al., 2024). Our work follows
that logic but focuses specifically on mathematics. We train a lightweight classifier to make simple
binary choices between two types of solvers.

There is also a growing body of research on predicting problem difficulty. Although this topic
has a long history in educational research, its application to Al systems is relatively recent. Some



approaches focus on estimating question difficulty using features or embeddings, while others propose
using model uncertainty or sensitivity as signals. In our case, we rely on difficulty labels from datasets
and observed solver behavior to train our classifier to anticipate when a stronger model is likely to be
necessary.

While many of these prior systems have aimed to improve overall model performance or reduce latency
through dynamic model selection, relatively few have focused on the specific task of cost-aware
routing for mathematical reasoning. Our approach differs in its emphasis on semantic solvability,
training a classifier not on general difficulty heuristics but on whether a given math problem is
empirically solvable by a cheaper model. Rather than using indirect proxies like model confidence
or uncertainty, we derive routing labels directly from model behavior across datasets of varying
difficulty.

Additionally, whereas some prior routing methods rely on complex selectors—often transformer-
based or learned through reinforcement learning—we prioritize cost and latency minimization at
every step of the pipeline. This means our classifier must be fast, lightweight, and accurate enough to
make a routing decision without undermining the cost savings gained by avoiding high-end models.
This makes our routing system not only mathematically aware but also computationally pragmatic.
While our earlier work was conducted using Gemini models, we have since transitioned to GPT-based
systems and are expanding our classifier to incorporate non-linear neural architectures. The high-level
design goals remain the same, which is to maximize the efficient use of LLM capabilities through
smarter problem routing.

Finally, it is worth emphasizing that our system is grounded in domain-specific observations. Rather
than treating all inputs as equivalent text, we treat mathematical problems as structured entities, using
embedding models that preserve semantic meaning and training classifiers that can distinguish subtle
shifts in problem complexity. This domain sensitivity sets our work apart from more generic routing
frameworks and enables higher precision when deciding which model is appropriate for a given task.
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3 Methods

3.1 Datasets

Our goal was to create a classifier which can discriminate based on problem semantics if a problem is
likely to be solvable using a mini (low parameter count), base model (1T+ parameter), or a model
enabled with chain of thought reasoning. This classifier is a proof-of-concept for a model that could
reduce the cost of problems by choosing a lower cost model (mini, base), which is likely to give



accurate results at the lowest latency and time. We are using data from three datasets: Dan Hendrycks’
MATH dataset, which contains problems, annotated solutions, difficulty ratings, and problem category
classification; the HARDMath dataset, which contains problems, annotated solutions, and problem
category classification, and the Google Deepmind MATH Dataset.

3.2 Data Preprocessing and Format

Our objective was to properly format the data such that it can be used for a classifier. To that end,
we processed our data using Pandas such that we were left with a dataframe including problem text,
solution, model tier which solved the problem, and token counts. This is done by first sending our
problems to 4.1-mini, where the model gives a response. These responses are judged, and correct
responses are sent to the final dataset, alongside token counts retrieved from the OpenAl API model
response objects. Then, for those problems not accurately answered by 4.1-mini, they are sent to
4.1 base, where they are solved again, re-evaluated, and split off. Finally, the problems are sent to
04-mini, where they are solved a final time. Our data follows a JSONL format as follows:

{id:"Problem_0", problem:"...", solution:"...", correct:0, 1, 2, 3, cost[input_count:0, output_count:0],
o}

The "correct" tag denoted what model, if any, was the first to solve the problem. 0 being 4.1-mini, 1
being 4.1, 2 being 04-mini, and finally 3 denoting a problem that all available models were unable to
solve.

This problem, on its surface seems simple, but due to the scale of the data processing and the need
for a second grader model for unparsable answers, we were required to make over 20000 calls to the
OpenAl API, costing around 40 dollars total, all for data labeling and preprocessing. We were also
required to write a large parsing, prompt building, and evaluation pipeline. We will detail this below.

3.3 Answer Processing

For the MATH dataset, every problem’s annotated solution contained a singular discrete numerical
answer wrapped by a LaTeX box. Therefore, we prompted our models to write its final answer with
the same formatting, and judged its correctness by comparing extracted answers from each box with
a string search. Before each comparison, we used various string replacement and parsing techniques
to reduce the corresponding LaTeX to its base components to reduce the possibility of stylistic
differences in answers from giving a false negative. We found that our base level non-reasoning
model, GPT 4.1-mini had a very high success rate on the MATH dataset problems, around 90% (i.e.
90% of our samples received a 1 value for correct). Based on this, we concluded that to show more
concrete results, we needed a more balanced split of categorical data. To achieve this, we looked
at the HARDMath dataset, which contained much more difficult problems, but which did not have
the solution simplicity of the MATH dataset. Similarly, we incorporate the Deepmind Math dataset
(similarly difficult for the models to solve).

Due to the nature of the problems in HARDMath, the solution extraction methods that we used for the
MATH and Deepmind datasets were insufficient to determine the correctness of a given solution. To
address this, we used a second model in parallel to act as a “grader,” which grades solutions based on
rubrics derived from a problem’s type. For example, if the problem asked for a proof-based response,
then our grader was asked to judge a solution based on the similarity of reasoning. If the problem
asked for a discrete solution, then the grader was more strict on numerical equivalence. Before we
used a model as a grader, we often found that a model solution was correct, but was an alternate form
of the given solution. A grader was able to determine both numerical and reasoning equivalence in
order to give us our labeled data.

We also found that parsing ground-truth solutions and model solutions into Sympy and then comparing
them to be very accurate at determining if a model had succeeded or not. Occasionally we needed to
write special parsing methods to compare Non-Latex/Sympy format-able answers such as unordered
lists.

3.3.1 Grading Model Prompt Building

Prompt engineering has one major task to achieve: lead the model into providing a solution that can
be easily compared to the ground-truth solution.



For each prompt given to a model, we provided example problems and solutions, which proved to be
vital for the HARDMath dataset, boosting accuracy during testing by 35%. We made sure that each
query did not contain the target answer, nor did it have any context of other queries, so that the model
would never input the ground-truth answer we were seeking.

Each prompt included instructions on how to format their answers, and every prompt instructed the
model to encapsulate their final answer after their explanation in a LaTeX box for easier answer
extraction. An example of a problem specific formatting instruction is: "write either *True’ or

o

’False’".

The HARDMath dataset proved especially difficult as the problems were very specialized, and
we found that adding even more format specific "hints" such as "Hint: Please answer the question
requiring a floating-point number with two decimal places and provide the final value" helped improve
model answer extraction.

However, that was not all that was needed for HARDMath, as some of the problems did not have a
singular concrete answer, often asking for formulas or abstract representations not easily parsed by
tools like sympy. Therefore, we needed to use a secondary model along with a specialized grading
prompt for each problem type to determine if an answer was correct.

The Hendrycks dataset and the DeepMind dataset were more straightforward. They required only
small amounts of format prompting as the answers were more linear and singular in nature.

3.4 Upsampling

Unfortunately, after all of our processing and data collection, we were left with a rather weak spread
of data, with Deepmind proving far too easy of a dataset, producing a split that was disappointingly
as follows:

0:12391, 1:693, 2:370 3:384.

Clearly, we have a class imbalance issue, and so to fix this, we used class weighting from scikit-learn
in order to take advantage of the abundance of 0 data, as well as upsampling our lower classes and
downsampling the O classes to just 3 times the total of the rest of the classes (making sure to ensure
that we avoid training on test data). Additionally, we took advantage of regularization and dropout
during model training, as discussed below.

3.5 Vector Embeddings - Encoding

Once we label our dataset with LLM responses and classification targets, we need a way to encode
our text into a classifiable format. While it might be better to directly train our own encoder on
text using a transformer, we would need significantly more data, time, and compute to do so. So,
in order to give ourselves an encoding format that is classifiable and accurately captures semantic
information on the text, we employ a Voyage-Al text embedding model. This model voyage-large,
a SOTA transformer based text encoder, reduces our problems to vector representations in 1024
float-64 dimensions. Under the hood, this captures the semantic meaning of our problems through
a transformer, and encodes these features into a vector. These vectors are then aligned with their
labels, solvable or not, from the previous data labeling steps. This decision was made because of the
complicated nature of these math problems. On the surface, many of these math problems have a
significant intersection in terms of words, for example things like “x”, “variable”, “integral”, etc. For
this reason, a simple bag of word representation is not sufficient to capture the complex interrelations
between concepts over the problems. Additionally, semantically similar vectors, and therefore vectors
similar in difficulty, will be numerically close, making this an apt format for classification.

These vectors are saved and cached between usages by ID in order to reduce costs. They are then fed
into our model to be used as training data alongside their labels.

3.6 Classification

Our model architecture for classification leverages a 3-hidden layer neural network. Our input layer
consists of 1024 neurons matching the dimensionality of the input vectors. This is followed by our
first hidden layer, a 512 neuron dense layer, with a batch normalization, and a ReLU activation. This
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Figure 3: Confusion Matrix

is followed by 256, then 128, then 64, then 32, eventually culminating in an output layer of 4 neurons.
This is then applied a softmax activation for classification, which gives our outputs as a probability.
The model is trained with an Adam optimizer, using a learning rate of 0.001, and a loss function of
sparse categorical cross entropy.

Our data, sparse as it is, gave us significant issues with overfitting. To that end, we went all in on
trying to prevent this via the aforementioned dropout layers, regularization, and batch norms.

Dropout randomly silences a percentage of neurons during each training update, preventing complex
co-dependencies between neurons by forcing the network to learn redundant representations. This
technique interestingly approximates training thousands of different neural networks simultaneously
and averaging their outputs, creating an implicit ensemble effect that can generalize better on new
data.

Batch normalization standardizes the inputs to each layer by calculating the mean and standard
deviation of the current mini-batch, then normalizing and rescaling with learnable parameters. This
keeps data flowing through the network in a consistent range, preventing extremely large or small
values that slow down or destabilize training.

Finally, regularization works like ridge regression by penalizing high variance in the weights of each
layer, preventing overfitting be reducing variance.

3.7 Cost Analysis

The main use-case of our model is to save token costs, we benchmark our model’s performance
against a naive user in the whom starts with the lowest model and increases the complexity of the
model on each failure.

Under the assumption that a higher model will always solve a problem if a lower model can, if our
classifier model overshoots or matches the truth, our comparative cost to get the correct answer is:

truth
cost(estimate) — Z cost(i)
=0

If our classifier model undershoots the truth, our comparative cost is:



truth truth estimate—1

Z cost(i) — Z cost(i) = — Z cost(1)

1=estimate 1=0 =0
Model Avg. Output Tokens | Cost per IM Tokens ($) | Avg. Cost per Question ($)
GPT-4.1 Mini 417 1.60 0.0006672
GPT-4.1 549 8.00 0.003672
GPT-04 Mini 2547 4.40 0.0112068

Table 1: Average cost per question for different GPT models

Using this cost table we can see that if our model overshoots we will gain comparative cost and
therefore lose money, and if we undershoot we will always lose or match comparative cost.

Our equation however can capture complexities between models of varying scale. For example, if
model 1 and model 2 together are more expensive than model 3, then overshooting 2 -> 3 will not
gain cost.

4 Preliminary Results

When training a logistic regression exclusively on the MATH dataset, we achieved a misleading
91.2% accuracy by simply learning to predict the dominant class (solvable problems), rather than
identifying meaningful patterns in problem complexity. We addressed this issue by incorporating the
HARDMath dataset, where our base model could only solve 20% of problems, creating essential
class diversity. The merged dataset produced a more robust classifier with 90.21% test accuracy and
0.3731 training loss that could effectively distinguish between problems solvable by a fast base model
versus those requiring advanced reasoning.

Despite these promising results, significant limitations remained: our classifier may have learned
dataset-specific patterns rather than true semantic features of problem solvability, given the stylistic
differences between MATH and HARDMath; and our combined dataset lacks representation of
intermediate-difficulty problems that occupy the crucial middle ground where model selection
decisions are most valuable.

5 Final Results

Training our neural network model on 5692 train examples, testing on 472, with a training accuracy
of 78%, and test of 58%, we get the confusion matrix above. We can see that there is a degree of
overfitting still in place, with a large gap between training and testing data. Throughout the course
of this project, we have learned an appreciation for how important data is to a project like this. The
lack of publicly available mathematics datasets that cleanly fit classification by models like this make
this issue even more pronounced. Furthermore, the large differences in formats between datasets, we
presume, also affect the models ability to generalize features across problems to inform decisions
that are deeper than specific words or problem styles. In other words, we believe it’s possible that the
model is fitting to the kinds of problems, and not some semantic understanding of the difficulty of
problems.

However, while it may be true that our model was unable to accurately predict, in terms of absolute
accuracy, the classes for most of the problems, analyzing the confusion matrix shows us that when
the model misses, it doesn’t miss by much. The highest error category is a false 2 when the ground
truth is a 1. Evidently, the boundary in problems between 4.1 and o4 is thin. But for problems which
should be solved by o4-mini, we relatively accurately predict as much. Additionally, for class 3
ground truth, we almost always see incorrect values pushed to class 2, which is the same end result
for the user.

6 Conclusion

After calculating the cost analysis based on our confusion matrix and our comparative cost equations,
we find that we save an average of $0.00004102 per call, or about 1/16th of a GPT-4.1-mini call.



This is not a significant difference, and can largely be attributed to 04 being incredibly expensive,
meaning that overshooting to 04 nearly outweighs all of the cost saves from beneficial classification.
Additionally, 4.1 is such a large and expensive model that overshooting from mini to 4.1 wipes out
any cost savings.

In this project, we developed an intelligent and adaptive routing system which can accurately evaluate
and direct mathematical queries a language model of sufficient solving capabilities based on the
query’s semantics. We began by amassing a sufficient collection of problems from mathematics
datasets of varying topic and difficulty. We then turned each problem itself into a 1024-dimensional
embedding and fed them into a lightweight neural network with three hidden layers and regularization
in the aim to avoid overfitting.

Despite our final network’s mediocre absolute accuracy on our test data, we were still pleased to find
that, in reality, we gained quite a bit of cost-efficiency. These results leave us optimistic that smart
routing can be effectively implemented alongside large-model reasoning development to the benefit
of both accuracy and efficiency. With better data and more compute, we are confident that we would
be able to create a model capable of higher accuracy.

7 Next Steps

With a lot more time, a lot more resources, and a lot more money, there are a variety of next steps we
could take. First, we could scrape math contest training websites, generate problems using LLMs, RL
self-play, and more. We could engage in some form of online labeling with this, where datapoints are
sent, processed into a standard format, and labeled over the OpenAl API as they come in. Doing this,
and improving our processing pipeline, we could likely 10x-100x our total data, which would enable
our model to see the more complex boundaries in our classes.

We could abandon fragile string-difference checks and instead combine symbolic analysis with a
neural-network-based rubric. Both the ground-truth solution and the candidate answer could be
parsed into structured representations; otherwise, the system reverts to a GPT-driven critique prompt
designed to penalize hallucinated reasoning. All results could flow through checkers so that erroneous
autogrades are flagged. This could reduce the prevalence of false labels and improve data integrity.

We could train our own distilled encoder to reduce the input parameterization of the problems, and
allow for a modest dense neural network to actually classify without overfitting to the data.

In an extreme case, we could even try to train with an RL policy, where making the choice to move
up a model incurs a cost equal to the expected monetary cost of doing so, or something similar.

Additionally, model selection would go a long way in saving costs for an end user, as we had discussed
in our conclusion a very expensive o4 model heavily distorted the results.

Finally, we could try to implement a front end solution to the problem, where users’ queries are
automatically routed properly to the right models and their cost savings are displayed to them directly

in app.
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